Selasa, 06 Desember 2011

Kopling

KOPLING
Kopling adalah suatu mekanisme yang dirancang mampu menghubungkan dan melepas/memutuskan perpindahan tenaga dari suatu benda yang berputar kebenda lainnya.
Pada bidang otomotif ,kopling digunakan untuk memindahkan tenaga motor keunit transmisi.dengan menggunakan kopling, pemindahan gigi-gigi trasmisi dapat dilakukan, kopling juga memungkinkan motor juga dapat berputar walaupun transmisi tidak dalam posisi netral.
Gb. 1 komponen utama kopling
1. KOPLING TETAP
Kopling tetap adalah suatu elemen mesin yang berfungsi sebagai penerus putaran dan daya dari poros penggerak ke poros yang digerakan secara pasti (tanpa terjadi selip ), dimana sumbu kedua poros tersebut terletak satu garis lurus atau dapat sedikit perbedaan sumbunya. berbeda dengan kopling tak tetap yang dapat dilepaskan dan dihubungkan bila diperlukan, maka kopling tetap selalu dalam keadaan terhubung.
MACAM-MACAM KOPLING TETAP
Kopling tetap mencakup kopling kaku yang tidak mengijinkan ketidak lurusan kedua sumbu poros, kopling luwes (fleksibel ) yang sedikit ketidak lurusan sumbu poros, dan kopling universal yang dipergunakan bila kedua poros akan membentuk sudut yang cukup besar.

Selasa, 08 November 2011

Rem ABS (Anti-Lock Braking Sistem) May 22, 2010

Posted by Panji Mitiqo Al-Farouk in Dunia Otomotif
trackback
Pengertian dasar:
Sistem rem anti terkunci atau anti-lock braking sistem (ABS) merupakan sistem pengereman pada mobil agar tidak terjadi penguncian roda ketika terjadi pengereman mendadak/keras.
Sistem ini bekerja apabila pada mobil terjadi pengereman keras sehingga salah sebagian atau semua roda berhenti sementara mobil masih melaju, membuat kendaraan tidak terkendali sama sekali. Ketika sensornya mendeteksi ada roda mengunci, ia akan memerintahkan piston rem untuk mengendurkan tekanan, lalu mengeraskannya kembali begitu roda berputar. Proses itu berlangsung sangat cepat, bisa mencapai 15 kali/detik. Efeknya adalah mobil tetap dapat dikendalikan dan jarak pengereman makin efektif.
Manfaat Fitur ABS
Kesalahan persepsi pada fungsi rem menyebabkan redahnya pemahaman konsumen pada manfaat rem ABS (Anti-lock Braking System). Karena itu, tak mengherankan bila masih banyak konsumen mobil yang menganggap sepele fungsi fitur rem ABS. Padahal, fitur ABS sangat besar manfaatnya bagi keselamatan berkendara, terutama saat pengereman mendadak� terlebih dilakukan di jalan yang licin.
Sampai detik ini pun banyak di antara pengemudi yang memahami rem sebagai penghenti laju kendaraan. Padahal, fungsi rem hanyalah mengurangi putaran roda. Cobalah Anda bayangkan, mengapa mobil yang berlari kencang masih meluncur ketika rem sudah diinjak sedemikian dalamnya. Apalagi bila dilakukan dalam kondisi lintasan basah atau berpasir.
Penyebab masih meluncurnya mobil setelah di rem bukan karena roda yang masih berputar, tapi diakibatkan gaya sentrifugal. Semakin kencang pergerakan mobil maka semakin besar potensi gaya sentrifugal yang diterimanya ketika dilakukan pengentian mendadak. Pada mobil tanpa fitur ABS gaya sentrifugal yang besar bahkan mampu menyeret ban yang terkunci oleh rem.
Efek dari gaya sentrifugal memang hanya melempar mobil lurus ke depan. Namun bisa dibayangkan, bagaimana bila ketika gaya sentrifugal diterima mobil posisi roda depan sedang dalam keadaan miring. Ya, mobil akan meluncur tak terkendali, bahkan paling fatal mengakibatkan mobil terbalik.
Untuk mengurangi gaya sentrifugal itulah maka tercipta rem ABS. Namun jauh sebelum ABS ditemukan para pembalap telah menerapkan prinsif kerja rem ABS secara manual. Para pembalap biasanya melakukan pengereman dari kecepatan tinggi dengan cara menekan pedal rem secara bertahap, dalam reflek tinggi dan bobot tekanan yang berbeda-beda.
Pengemudi awam kerap memahami metode ini dengan melakukan tindakan “mengocok” rem. Namun hampir sebagian besar dari mereka salah menerapkannya. Alhasil, tak ada manfaat dari tindakannya itu.
Sebetulnya, yang dilakukan pembalap tempo dulu (sebelum ditemukan ABS) sama dengan prinsip sederhana kerja fitur ABS. ABS melakukan pengurangan laju secara gradual dengan pengereman bertahap. Metode kerjanya dikontrol secara mekanis. Tujuannya, untuk menghindari roda terkunci, sehingga potensi gaya sentrifugal yang akan mendorong mobil ikut terkurangi.
Pada mobil-mobil mahal, sistem ABS sudah dikontrol oleh teknologi komputer yang cerdas. Beberapa mobil canggih bahkan bisa mengontrol besaran tekanan rem yang dibutuhkan untuk masing-masing roda.
Namun terkadang, tanpa di sadari, banyak pengendara mobil berfitur ABS masih memperlakukan gaya pengereman “mengocok”. Tindakan ini sama sekali tidak dibutuhkan. Sebaliknya bila hal ini dilakukan maka hanya akan membingungka sensor ABS yang pada ujungnya mengurangi sensitifitas pengereman.
Jadi, bila Anda ingin membeli mobil pikirkan manfaat fitur ABS. Lagi pula apa ruginya menambah uang untuk sebuah sistem yang akan memberi keselamatan bagi Anda dan keluarga?
Mercedes-Benz S-Class terbaru termasuk mobil yang menggunakan teknologi pengereman ABS paling mutakhir.
Cara Kerja Rem ABS + Piranti Pendukung EBD
Ide dibalik teknologi ABS pada dasarnya sederhana. Biasanya saat rem diinjak secara penuh, keempat roda kendaraan akan langsung mengunci. Setelah itu, mobil meluncur lurus ke depan tak bisa dikendalikan dalam posisi membelok. Ketidakstabilan itulah yang sering terjadi pada sistem rem nonABS. Hal seperti itu, tentu menimbulkan risiko kecelakaan, apalagi bila di depannya ada rintangan.
Lain lagi dengan sistem ABS. Rem ini dirancang anti mengunci dengan tujuan untuk mencegah selip. Selain itu, membantu pengemudi memantapkan kendali pada setir dalam situasi pengereman mendadak. Dengan kata lain, ABS mencegah roda kendaraan untuk mengunci, mengurangi jarak yang diperlukan untuk berhenti dan memperbaiki pengendalian pengemudi di saat pengereman mendadak.
Proses kerja ABS, yaitu saat pengemudi menginjak rem, keempat roda langsung mengunci. Namun, saat pengemudi tiba-tiba membelokkan setir ke kiri atau ke kanan, komputer secara otomatis melepas roda yang terkunci. Dengan sistem itu, maka mobil bisa dikendalikan dan dihentikan, sekaligus menghindari rintangan di depannya.
Cara kerja ABS adalah mengurangi tekanan tiba-tiba minyak/oli rem pada kaliper kanvas yang menjepit piringan rem atau teromol. Tekanan minyak rem disalurkan secara bertahap. Sehingga secara perlahan-lahan kendaraan dapat dihentikan saat pengereman mendadak.
Dalam perkembangannya sistem ABS ternyata dianggap belum cukup, sehingga para pakar otomotif pun mengembangkan teknologi pendukungnya. Piranti itu diberi nama EBD yang dirancang dengan tujuan memperpendek jarak pengereman yaitu saat rem diinjak sampai mobil benar-benar berhenti. EBD bekerja dengan memakai sensor yang memonitor beban pada tiap roda. Proses kerjanya, jika rem diinjak, maka komputer akan membagi tekanan ke setiap roda sesuai dengan beban yang dipikulnya. Dampaknya jarak pengereman menjadi semakin pendek.
Kedua piranti ABS dan EBD saling bekerja sama untuk meningkatkan keselamatan. Sensor yang berada pada setiap roda memonitor kapan roda terkunci saat pengereman. Setiap sensor memberikan sinyal ke piranti EBD untuk mengatur kapan harus melepaskan tekanan hidrolis atau memberi tekanan kembali dalam waktu singkat.
Ketika rem diinjak dan roda berputar lambat, unit EBD menentukan roda mana yang akan mengunci. Unit EBD kemudian memberi sinyal untuk mengurangi tekanan pengereman agar roda kembali berputar, hingga mencegah roda mengunci.
Teknologi rem berkembang semakin canggih. Rem tidak lagi hanya berfungsi pada saat pengemudi menginjak pedal. Teknologi itu disebut electronic stability program (ESP), atau traction control.
Sensor khusus dipasang untuk mengontrol perputaran tiap-tiap roda. Jika sebuah roda mengalami spin (berputar lebih cepat karena roda tidak menapak di permukaan jalan/ tanah), maka rem akan segera menghentikan roda itu. Selanjutnya torsi dipindahkan ke roda-roda yang menapak lebih baik, sampai roda yang mengalami spin berfungsi kembali. Rem juga akan berfungsi saat mobil mengalami understeer (terlambat menikung sehingga mobil keluar jalur) atau oversteer (menikung terlalu cepat sehingga melintir).

Toyota Prius

Toyota Prius benar-benar berperan penting mengurangi emisi gas buang CO2. Betapa tidak, sejak diluncurkan kali pertama pada 1997 lalu, Toyota Prius telah terjual 2.011.800 unit hingga akhir September 2010. Artinya jumlah ini menurut Toyota Motor Corporation (TMC) setara dengan pengurangan emisi CO2 sampai 11 juta ton CO2.

Hasil ini menurut TMC merupakan perbandingan dari mesin bensin yang dipakai Prius, ukuran kendaraan, dan cara menggemudikannya dengan mesin bensin lainnya. Dari perbandingan tersebut akan diketahui berapa jumlah CO2 yang berhasil dieliminasi oleh Prius.

Selasa, 01 November 2011

SUSPENSI

Sistem suspensi (kendaraan)

Dari Wikipedia bahasa Indonesia, ensiklopedia bebas
Komponen suspensi depan Ford Model T.
Suspensi adalah kumpulan komponen tertentu yang berfungsi meredam kejutan, getaran yang terjadi pada kendaraan akibat permukaan jalan yang tidak rata yang dapat meningkatkan kenyamanan berkendara dan pengendalian kendaraan. Sistem suspensi kendaraan terletak di antara bodi (kerangka) dengan roda. Ada dua jenis utama suspensi yaitu :
  1. Sistem suspensi dependen atau sistem suspensi poros kaku (rigid)
  2. Sistem suspensi independen atau sistem suspensi bebas.

Sistem suspensi dependen

Roda dalam satu poros dihubungkan dengan poros kaku (rigid), poros kaku tersebut dihubungkan ke bodi dengan menggunakan pegas, peredam kejut dan lengan kontrol (control arm)
Awalnya semua kendaraan menggunakan sistem ini. Sampai sekarang sebagian besar kendaraan berat seperti truck, masih menggunakan sistem ini, sedangkan kendaraan niaga umumnya menggunakan sistem ini pada roda belakang.

[sunting] Sistem suspensi independen

Antara roda dalam satu poros tidak terhubung secara langsung, masing-masing roda (roda kiri dan kanan) terhubung ke bodi atau rangka dengan lengan suspensi (suspension arm), pegas dan peredam kejut. Goncangan atau getaran pada salah satu roda tidak memengaruhi roda yang lain.
Umumnya kendaraan penumpang menggunakan sistem ini pada semua poros rodanya, sedangkan kendaraan niaga umumnya menggunakan sistem ini pada roda depan sedangkan pada poros roda belakang menggunakan sistem suspensi dependen pada poros roda belakang. Tipe MacPherson strut dan double-wishbone termasuk dalam jenis sistem ini.

[sunting] Komponen utama

[sunting] Pegas

Dengan sifat pegas yang elastis, pegas berfungsi untuk menerima getaran atau goncangan roda akibat dari kondisi jalan yang dilalui dengan tujuan agar getaran atau goncangan dari roda tidak menyalur ke bodi atau rangka kendaraan.
Beberapa tipe pegas yang digunakan pada sistem suspensi :
  • Pegas ulir (coil spring), dikenal juga dengan nama 'per keong', jenis yang digunakan adalah pegas ulir tekan atau pegas ulir untuk menerima beban tekan.
  • Pegas daun (leaf spring), umumnya digunakan pada kendaraan berat atau niaga dengan sistem suspensi dependen.
  • Pegas puntir atau dikenal dengan nama pegas batang torsi (torsion bar spring), umumnya digunakan pada kendaraan dengan beban tidak terlalu berat.

[sunting] Peredam kejut

Peredam kejut berfungsi untuk meredam beban kejut atau goncangan atau getaran yang diterima pegas.

[sunting] Lengan suspensi

Lengan suspensi atau suspension arm hanya terdapat pada sistem suspensi dependen, terpasang pada bodi atau rangka kendaraan, berfungsi untuk memegang rangka roda kendaraan. Pergerakan yang komplek pada roda agar dapat sinkron dengan pergerakan pergerakan lengan suspensi maka terdapat ball joint pada pengikatan lengan suspensi dengan rangka roda.

Jumat, 30 September 2011


MENGENALI CARA KERJA MESIN 4 TAK

Posted: 28 April 2009 by ratspeed in Fungsi dan Cara Kerja
Tag:

Langkah Hisap
Langkah Hisap
Four stroke engine adalah sebuah mesin dimana untuk menghasilkan sebuah tenaga memerlukan empat proses langkah naik-turun piston, dua kali rotasi kruk as, dan satu putaran noken as (camshaft).
Empat proses tersebut terbagi dalam siklus :
Langkah hisap : Bertujuan untuk memasukkan kabut udara – bahan bakar ke dalam silinder.  Sebagaimana tenaga mesin diproduksi tergantung dari jumlah bahan-bakar yang terbakar selama proses pembakaran.
Prosesnya adalah ;
  1. Piston bergerak dari Titik Mati Atas (TMA) menuju Titik Mati Bawah (TMB).
  2. Klep inlet terbuka, bahan bakar masuk ke silinder
  3. Kruk As berputar 180 derajat
  4. Noken As berputar 90 derajat
  5. Tekanan negatif piston menghisap kabut udara-bahan bakar masuk ke silinder
—————————————————————————————————————————————–
LANGKAH KOMPRESI
Langkah Kompresi
Langkah Kompresi
Dimulai saat klep inlet menutup dan piston terdorong ke arah ruang bakar akibat momentum dari kruk as dan flywheel.
Tujuan dari langkah kompresi adalah untuk meningkatkan temperatur sehingga campuran udara-bahan bakar dapat bersenyawa. Rasio kompresi ini juga nantinya berhubungan erat dengan produksi tenaga.
Prosesnya sebagai berikut :
  1. Piston bergerak kembali dari TMB ke TMA
  2. Klep In menutup, Klep Ex tetap tertutup
  3. Bahan Bakar termampatkan ke dalam kubah pembakaran (combustion chamber)
  4. Sekitar 15 derajat sebelum TMA , busi mulai menyalakan bunga api dan memulai proses pembakaran
  5. Kruk as mencapai satu rotasi penuh (360 derajat)
  6. Noken as mencapai 180 derajat
—————————————————————————————————————————————–
LANGKAH TENAGA
Langkah Tenaga
Langkah Tenaga
Dimulai ketika campuran udara/bahan-bakar dinyalakan oleh busi. Dengan cepat campuran yang terbakar ini merambat dan terjadilah ledakan yang tertahan oleh dinding kepala silinder sehingga menimbulkan tendangan balik bertekanan tinggi yang mendorong piston turun ke silinder bore. Gerakan linier dari piston ini dirubah menjadi gerak rotasi oleh kruk as. Enersi rotasi diteruskan sebagai momentum menuju flywheel yang bukan hanya menghasilkan tenaga, counter balance weight pada kruk as membantu piston melakukan siklus berikutnya.
Prosesnya sebagai berikut :
  1. Ledakan tercipta secara sempurna di ruang bakar
  2. Piston terlempar dari TMA menuju TMB
  3. Klep inlet menutup penuh, sedangkan menjelang akhir langkah usaha klep buang mulai sedikit terbuka.
  4. Terjadi transformasi energi gerak bolak-balik piston menjadi energi rotasi kruk as
  5. Putaran Kruk As mencapai 540 derajat
  6. Putaran Noken As 270 derajat
—————————————————————————————————————————————–
LANGKAH BUANG
Exhaust stroke
Exhaust stroke
Langkah buang menjadi sangat penting untuk menghasilkan operasi kinerja mesin yang lembut dan efisien. Piston bergerak mendorong gas sisa pembakaran keluar dari silinder menuju pipa knalpot. Proses ini harus dilakukan dengan total, dikarenakan sedikit saja terdapat gas sisa pembakaran yang tercampur bersama pemasukkan gas baru akan mereduksi potensial tenaga yang dihasilkan.
Prosesnya adalah :
  1. Counter balance weight pada kruk as memberikan gaya normal untuk menggerakkan piston dari TMB ke TMA
  2. Klep Ex terbuka Sempurna, Klep Inlet menutup penuh
  3. Gas sisa hasil pembakaran didesak keluar oleh piston melalui port exhaust menuju knalpot
  4. Kruk as melakukan 2 rotasi penuh (720 derajat)

CARA KERJA MOTOR 4 LANGKAH



Mengapa mesin disebut 4 tak, karena memang ada 4 langkah. berikut cara kerja na...

1. Intake/hisapDisebut langkah intake/hisap karena langkah pertama adalah menghisap melalui piston dari karburator. Pasokan bahan bakar tidak cukup hanya dari semprotan karburator. Cara kerjanya adalah sbb. Piston pertama kali berada di posisi atas (atau disebut Titik Mati Atas/TMA). Lalu piston menghisap bahan bakar yang sudah disetting/dicampur antara bensin dan udara di karburator. Piston lalu mundur menghisap bahan bakar. Untuk membuka, diperlukan klep atau valve inlet yang akan membuka pada saat piston turun/menghisap ke arah bawah.

Gerakan valve atau inlet diatur oleh camshaft secara mekanis. Yakni, camshaft mengatur besaran bukaan klep dengan cara menekan tuas klep. Camshaft sendiri digerakan oleh rantai keteng yang disambungkan antara camshaft ke crankshaft.beberapa mobil Eropa seperti Mercedez menggunakan rantai sebagai penghubung antara crankshaft dan camshaft, tetapi umumnya di mobil Jepang menggunakan belt yang kita kenal sebagai timing belt.

2. KompresiLangkah ini adalah lanjutan dari langkah di atas. Setelah piston mencapai titik terbawah di tahapan intake, lalu valve intake tertutup, dan dilakukan proses kompresi. Yakni, bahan bakar yang sudah ada di ruang bakar dimampatkan. Ruangan sudah tertutup rapat karena kedua valve (intake dan exhaust) tertutup. Proses ini terus berjalan sampai langkah berikut yakni meledaknya busi di langkah ke 3.


3. Combustion (Pembakaran)Tahap berikut adalah busi pada titik tertentu akan meledak setelah PISTON BERGERAK MENCAPAI TITIK MATI ATAS DAN MUNDUR BEBERAPA DERAJAT. Jadi, busi tidak meledak pada saat piston di titik paling atas (disebut titik 0 derajat), tetapi piston mundur dulu, baru meledak. Hal ini karena untuk menghindari adanya energi yang terbuang sia-sia karena pada saat piston di titik mati atas, masih ada energi laten (yang tersimpan akibat dorongan proses kompresi). Jika pada titik 0 derajat busi meledak, bisa jadi piston mundur tetapi mengengkol crankshaft ke arah belakang (motor mundur ke belakang, bukan memutar roda ke depan).Setelah proses pembakaran, maka piston memiliki energi untuk mendorong crankshaft yang nantinya akan dialirkan melalui gearbox dan sproket, rantai, dan terakhir ke roda.



4. Exhaust (Pembuangan)
Langkah terakhir ini dilakukan setelah pembakaran. Piston akibat pembakaran akan terdorong hingga ke titik yang paling bawah, atau disebut Titik Mati Bawah(TMB). Setelah itu, piston akan mendorong ke depan dan klep exhaust membuka sementara klep intake tertutup. Oleh karena itu, maka gas buang akan terdorong masuk ke lubang Exhaust Port (atau kita bilang lubang sambungan ke knalpot). Dengan demikian, maka kita bisa membuang semua sisa gas buang akibat pembakaran. Dan setelah bersih kembali, lalu kita akan masuk lagi mengulangi langkah ke 1 lagi.

Selasa, 20 September 2011

Mesin Bensin


Dari Wikipedia bahasa Indonesia, ensiklopedia bebas

Mesin bensin atau mesin Otto dari Nikolaus Otto adalah sebuah tipe mesin pembakaran dalam yang menggunakan nyala busi untuk proses pembakaran, dirancang untuk menggunakan bahan bakar bensin atau yang sejenis.
Mesin bensin berbeda dengan mesin diesel dalam metode pencampuran bahan bakar dengan udara, dan mesin bensin selalu menggunakan penyalaan busi untuk proses pembakaran.
Pada mesin diesel, hanya udara yang dikompresikan dalam ruang bakar dan dengan sendirinya udara tersebut terpanaskan, bahan bakar disuntikan ke dalam ruang bakar di akhir langkah kompresi untuk bercampur dengan udara yang sangat panas, pada saat kombinasi antara jumlah udara, jumlah bahan bakar, dan temperatur dalam kondisi tepat maka campuran udara dan bakar tersebut akan terbakar dengan sendirinya.
Pada mesin bensin, pada umumnya udara dan bahan bakar dicampur sebelum masuk ke ruang bakar, sebagian kecil mesin bensin modern mengaplikasikan injeksi bahan bakar langsung ke silinder ruang bakar termasuk mesin bensin 2 tak untuk mendapatkan emisi gas buang yang ramah lingkungan. Pencampuran udara dan bahan bakar dilakukan oleh karburator atau sistem injeksi, keduanya mengalami perkembangan dari sistem manual sampai dengan penambahan sensor-sensor elektronik. Sistem Injeksi Bahan bakar di motor otto terjadi diluar silinder, tujuannya untuk mencampur udara dengan bahan bakar seproporsional mungkin. Hal ini dsebut EFI